2022 Consumer Confidence Report

Water System Name:	Chiriaco Summit Water District	Report Date:	06/29/2023

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2022 and may include earlier monitoring data.

ESTE INFORME CONTIENE INFORMACIÓN MUY IMPORTANTE SOBRE SU AGUA PARA BEBER. FAVOR DE COMUNICARSE AL DISTRITO DE AGUA DE CHIRIACO SUMMIT PARA ASISTIRLO EN ESPAÑOL SI TIENE ALGUNA DUDA.

Type of water source(s) in use:

Surface Water

Name & location of source(s):

Colorado River Aqueduct

Drinking Water Source Assessment information: As per MWD, and based on a Source Water Assessment (SWA) completed in December of 2002 at the Whitsett Intake Pumping Plant, this source (Colorado River supplies upstream of the plant) is considered to be most vulnerable to treated wastewater discharges, urbanization in the watershed, and recreation. Treated wastewater discharges and urbanization may contribute sources of nutrients, pathogens, metals, and other chemicals of concern. (For more information about the SWA, please call (213) 217-6850).

Time and place of regularly scheduled boar month in Jan., March, May, July, Sept., and		-	· · · · · · · · · · · · · · · · · · ·	Tuesday of every other vailable at www.cswaterdistrict.org
For more information, contact:	Hector Sanchez, Chi		Phone:	(760) 899-3118
	TERMS USE	D IN THIS REPORT		
Maximum Contaminant Level (MCL): contaminant that is allowed in drinking wa as close to the PHGs (or MCLGs) technologically feasible. Secondary MCLs a taste, and appearance of drinking water. Maximum Contaminant Level Goal (if contaminant in drinking water below we expected risk to health. MCLGs are set if Protection Agency (U.S. EPA). Public Health Goal (PHG): The level of a water below which there is no known of PHGs are set by the California Environmer Maximum Residual Disinfectant Level (MR disinfectant allowed in drinking water. The that addition of a disinfectant is necessa contaminants. Maximum Residual Disinfectant Level Good drinking water disinfectant below whice expected risk to health. MRDLGs do not use of disinfectants to control microbial co Primary Drinking Water Standards (PDW contaminants that affect health along w reporting requirements, and water treatments	ater. Primary MCLs are set as is economically and are set to protect the odor, MCLG): The level of a ich there is no known or by the U.S. Environmental a contaminant in drinking r expected risk to health. Ital Protection Agency. DL): The highest level of a ere is convincing evidence ry for control of microbial al (MRDLG): The level of a h there is no known or reflect the benefits of the ontaminants. VS): MCLs and MRDLs for vith their monitoring and	affect taste, odor, o SDWSs do not affect Treatment Techniq of a contaminant in Regulatory Action exceeded, triggers must follow. Variances and Exe Control Board (Stat treatment technique Level 1 Assessment identify potential p bacteria have been Level 2 Assessment water system to ide an <i>E. coli</i> MCL violar been found in our of ND : not detectable ppm : parts per mill ppb : parts per mill ppt : parts per trillio ppq : parts per quad	br appearance of the d ct the health at the MC que (TT): A required pro- n drinking water. Level (AL): The concen- treatment or other re- mptions: Permissions ate Board) to exceed ue under certain condit t: A Level 1 assessmen problems and determine found in our water sys- t: A Level 2 assessmen entify potential probler tion has occurred and/ow water system on multip	ocess intended to reduce the level tration of a contaminant which, if equirements that a water system from the State Water Resources an MCL or not comply with a tions. It is a study of the water system to ne (if possible) why total coliform stem. ent is a very detailed study of the ms and determine (if possible) why or why total coliform bacteria have ple occasions. ter (mg/L) iter (mg/L) ter (ng/L) r liter (pg/L)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1A, 1B, 2, 3, 4, 5, 6A, 6B, 7 and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1A – CHIRIACO SUMMIT WATER DISTRICT DISTRIBUTION SYSTEM SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA								
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria			
Total Coliform Bacteria (state Total Coliform Rule)	0 (In a month)	0	1 positive monthly sample ^(a)	0	Naturally present in the environment			
Fecal Coliform or <i>E. coli</i> (state Total Coliform Rule)	0 (In the year)	0	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive		Human and animal fecal waste			
<i>E. coli</i> (Federal Revised Total Coliform Rule)	0 (In the year)	0	(b)	0	Human and animal fecal waste			

(a) Two or more positive monthly samples is a violation of the MCL

(b) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

TABLE 1B – CHIRIACO SUMMIT WATER DISTRICT RAW WATER SUPPLY SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA						
Microbiological Contaminants (complete if bacteria detected)	Sample Date Range (Frequency) Average		Typical Source of Bacteria			
Total Coliform Bacteria	1/22–12/22	13 -> 1600	Naturally present in the environment			
(CFU/100 mL)	(Monthly)	807				
<i>E. coli</i>	1/22–12/22	ND-2	Human and animal fecal waste			
(CFU/100 mL)	(Monthly)	1				

Т	TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER								
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	PHG	No. of Schools Requesting Lead Sampling	Typical Source of Contaminant	
Lead (ppb)	08/2020	5	ND	0	15	0.2	Not applicable	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits	
Copper (ppm)	08/2020	5	0.031	0	1.3	0.3	Not applicable	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives	

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Chiriaco Summit Water District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

TABLE 3 – SOURCE WATER MONITORING RESULTS FOR SODIUM AND HARDNESS ⁵								
Chemical or Constituent (and reporting units)	Sample Date	Range of Detections		Range of Detections		MCL	PHG (MCLG)	Typical Source of Contaminant
	April 2022; October	Range	90 -96	Mana	Mana	Salt present in the water and is generally		
Sodium (ppm)	2022	Average	93	None	None	naturally occurring.		
Hardness (as CaCo ₃)	April 2022; October	Range	284 – 289	Nees	Mana	Generally, magnesium and calcium cations,		
(ppm)	2022	Average	286	None	None	and are usually naturally occurring.		

TA	BLE 4 – DETECTI	ON OF CONT	aminants	WITH A <u>P</u> F	RIMARY DRIN	IKING WATER STANDARD ⁵
Chemical or Constituent (and reporting units)	Sample Date	Range of Detections	Level Detected	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Arconia (nnh)	Apr 2022	Range	2.0	10	0.004	Erosions of natural deposits; runoff from orchards;
Arsenic (ppb)	Apr. 2022	Average	2.0	10	0.004	glass and electronics production wastes
Fluoride (ppm)	Apr. 2022; Oct.	Range	0.3	2.0	1	Erosion of natural deposits; discharge from
(naturally occurring)	2022	Average	0.3	2.0		fertilizer and aluminum factories
		Range	105	1,000	2000	Oil and metal refineries discharge; natural
Barium (ppb)	Apr. 2022	Average	105			deposits erosion
Gross Alpha Particle	Apr. 2022; Oct.	Range	ND – 3.6	15	0	Erosion of natural deposits.
Activity (pCi/L) ¹	2022	Average	ND	15	0	erosion of natural deposits.
Gross Beta Particle	2022	Range	5.0 - 8.5		0	
Activity (pCi/L) ^(2,4)	(Quarterly)	/) Average	6.8	50	0	Decay of natural and man-made deposits
	2022	Range	2.5 – 2.8			
Uranium (pCi/L) ⁽⁴⁾	(Quarterly)	Average	2.7	20	0.43	Erosion of natural deposits.

TABLE 5 – DISTRIBUTION SYSTEM MONITORING RESULTS FOR DISINFECTION BYPRODUCTS AND DISINFECTANT RESIDUALS ³

Chemical or Constituent (and reporting units)	Sample Date	Range Average	Levels of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Total Trihalomethanes (TTHM) (ppb)	08/2022	Range	73	80	NONE	Byproduct of drinking water
	00,2022	Average				chlorination
Haloacetic Acids (Five) (HAA5) (ppb)	08/2022	Range	19	60	NONE	Byproduct of drinking water
Taloacetic Acids (Five) (TIAAS) (PPD)	00/2022	Average	19	00	NONE	chlorination
Chloring (free) Desidual (nnm)	01/2022 ~	Range	2.06 - 3.35	4.0	4.0	Drinking water disinfectant
Chlorine (free) Residual (ppm)	12/2022	Average	2.71	4.0	4.0	added for treatment

TABLE 6A – DISTRIBUTION SYSTEM MONITORING RESULTS FOR CONSTITUENTS WITH A SECONDARY DRINKING WATER STANDARD ⁴

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Levels of Detection	MCL	Typical Source	
Turkidity (NTU) 01/2022 ~		Range	0.014 - 0.033	E	Soil Runoff.	
Turbidity (NTU)	12/2021	Average	0.024	5	Soli Runon.	
Odor Threshold (TON) October 2022		Range	ND	2	Naturally occurring organic materials	
Odor Threshold (TON)	October 2022	Average	UVI	3	Naturally occurring organic materials	

Chiriaco Summit Water District

¹ Data are from samples collected (triennially) during four consecutive quarters of monitoring in 2020 and reported for three years until the next samples are collected.

² The gross beta particle activity MCL is 4 millirem/year annual dose equivalent to the total body or any internal organ. The screening level is 50 pCi/L.

³ Chiriaco Summit Water District sampling.

⁴ Samples were taken from the facility domestic tank effluent

⁵ Samples were taken from the Colorado River at Lake Havasu, Wittset Intake Pumping Plant

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Chloride (ppm)	Apr. 2022;	Range	91 - 100	500	NA	Runoff/leaching from natural
elliende (ppili)	Oct. 2022	Average	96	300		deposits
Color (units)	Apr. 2022;	Range	3	3 15		Naturally occurring organic minerals
color (units)	Oct. 2022	Average	5	15	NA	
Specific Conductance	Apr. 2022;	Range	943 – 990	1,600	NA	Substances that form ions in water;
(µS/cm)	Oct. 2022	Average	966	1,000	NA NA	seawater influence
Sulfate (ppm)	Apr. 2022;	Range	202 – 222	500	NA	Runoff/leaching from natural
Sullate (ppill)	Oct. 2022	Average	212	500	NA	deposits; industrial waste
Total Dissolved Solids	Apr. 2022;	Range	607 – 632			Runoff/leaching from natural
(ppm)	Oct. 2022	Average	620	1,000	NA	deposits

TABLE 7 - MONITORING RESULTS FOR UNREGULATED CONTAMINANTS ⁵							
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Levels of Detection	Notification Level	Health Effects Language		
Boron (pph)	Apr.	Range	130 1.000		The babies of some pregnant women who drink water containing boron in excess of the notification level may have an increased		
Boron (nph)	2022	Average	130	1,000	risk of developmental effects, based on studies in laboratory animals.		
Chlorate (ppb)	Aug.	Range	193	800	High doses of chlorate can interfere with thyroid function and		
Chiorate (ppb)	2022	Average	192		can cause oxidative damage to red blood cells.		

TABLE 8 - SAMPLING RESULTS SHOWING TREATMENT OF SURFACE WATER SOURCES					
Treatment Technique ^(a) (Type of approved filtration technology used)	Evoqua (Siemens) Memcor Microfiltration System				
Turbidity Performance Standards ^(b) (that must be met through the water treatment process)	Turbidity of the filtered water must: 1 – Be less than or equal to 0.1 NTU in 95% of measurements in a month. 2 – Not exceed 1.0 NTU for more than eight consecutive hours. 3 – Not exceed 1.0 NTU at any time.				
Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1.	100%				
Highest single turbidity measurement during the year	0.035NTU				
Number of violations of any surface water treatment requirements	0				

(a) A required process intended to reduce the level of a contaminant in drinking water.

(b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Chiriaco Summit Water District

 $^{^{\}rm 5}$ Samples were taken from the Colorado River at Eagle Mountain Pumping Plant